Stra13 regulates satellite cell activation by antagonizing Notch signaling

نویسندگان

  • Hong Sun
  • Li Li
  • Cécile Vercherat
  • Neriman Tuba Gulbagci
  • Sujata Acharjee
  • Jiali Li
  • Teng-Kai Chung
  • Tin Htwe Thin
  • Reshma Taneja
چکیده

Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription factor Stra13 modulates Notch signaling in regenerating muscle. Upon injury, Stra13(-/-) mice exhibit increased cellular proliferation, elevated Notch signaling, a striking regeneration defect characterized by degenerated myotubes, increased mononuclear cells, and fibrosis. Stra13(-/-) primary myoblasts also exhibit enhanced Notch activity, increased proliferation, and defective differentiation. Inhibition of Notch signaling ex vivo and in vivo ameliorates the phenotype of Stra13(-/-) mutants. We demonstrate in vitro that Stra13 antagonizes Notch activity and reverses the Notch-imposed inhibition of myogenesis. Thus, Stra13 plays an important role in postnatal myogenesis by attenuating Notch signaling to reduce myoblast proliferation and promote myogenic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis.

Epithelial cells of mucosal tissues provide a barrier against environmental stress, and keratinocytes are key decision makers for immune cell function in the skin. Currently, epithelial signaling networks that instruct barrier immunity remain uncharacterized. Here we have shown that keratinocyte-specific deletion of a disintegrin and metalloproteinase 17 (Adam17) triggers T helper 2 and/or T he...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

Lola regulates cell fate by antagonizing Notch induction in the Drosophila eye

Lola is a transcription repressor that regulates axon guidance in the developing embryonic nervous system of Drosophila. Here, we show that Lola regulates two binary cell fate decisions guided by Notch inductive signaling in the developing eye: the R3-R4 and the R7-cone cell fate choices. Lola is required cell-autonomously in R3 for its specification, and Lola transforms R4 into R3 if overexpre...

متن کامل

Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner.

The sensory cells of the mammalian organ of Corti assume a precise mosaic arrangement during embryonic development. Manipulation of Wnt signaling can modulate the proliferation of cochlear progenitors, but whether Wnts are responsible for patterning compartments, or specific hair cells within them, is unclear. To address how the precise timing of Wnt signaling impacts patterning across the radi...

متن کامل

Treadmill running induces satellite cell activation in diabetic mice

Skeletal muscle-derived stem cells, termed as satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Diabetes mellitus (DM), one of the most common metabolic diseases, causes impairments of satellite cell function. However, the studies of the countermeasures for the DM-induced dysfunction of satellite cells have been poor. Here, we investigated the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007